Wykaż, że logarytm o podstawie a z b = logarytm o podstawie [tex] a^{3} [/tex] z [tex] b^{3} [/tex] dla a > 0 ∧ a ≠ 1 ∧ b > 0.

Nasz przyjaciel, Praca Domowa wyślij nowe pytanie na KLASA.ONLINE.

Pytanie brzmi: Wykaż, że logarytm o podstawie a z b = logarytm o podstawie [tex] a^{3} [/tex] z [tex] b^{3} [/tex] dla a > 0 ∧ a ≠ 1 ∧ b > 0.

Wykaż, że logarytm o podstawie a z b = logarytm o podstawie [tex] a^{3} [/tex] z [tex] b^{3} [/tex] dla a > 0 ∧ a ≠ 1 ∧ b > 0.

DYSKUSJA I ODPOWIEDZI

Proszę zapoznać się z dyskusji i odpowiedzi na pytania Wykaż, że logarytm o podstawie a z b = logarytm o podstawie [tex] a^{3} [/tex] z [tex] b^{3} [/tex] dla a > 0 ∧ a ≠ 1 ∧ b > 0. poniżej. Pytania bez odpowiedzi wkrótce otrzymać przegląd i omówienie innych użytkowników.

Można także uczestniczyć odpowiedzieć lub odpowiedzieć na pytanie "Wykaż, że logarytm o podstawie a z b = logarytm o podstawie [tex] a^{3} [/tex] z [tex] b^{3} [/tex] dla a > 0 ∧ a ≠ 1 ∧ b > 0.". Nie bój się dzielić, chociaż wciąż nie jest w porządku. Na tej stronie możemy uczyć się razem i informacji zwrotnej.

Dostarczając odpowiedzi lub odpowiedzi na pytania Wykaż, że logarytm o podstawie a z b = logarytm o podstawie [tex] a^{3} [/tex] z [tex] b^{3} [/tex] dla a > 0 ∧ a ≠ 1 ∧ b > 0., Pomogłeś studenci uzyskać odpowiedź mu potrzebne.

Dodaj komentarz

Twój adres e-mail nie zostanie opublikowany. Wymagane pola są oznaczone *